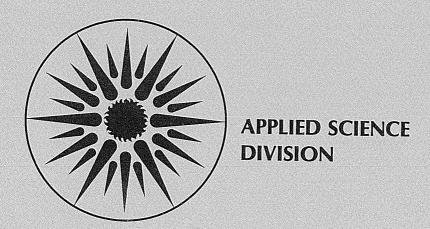


## Lawrence Berkeley Laboratory


UNIVERSITY OF CALIFORNIA

# APPLIED SCIENCE DIVISION

Government Policy and Market Penetration Opportunities for U.S. Renewable Energy Technology in India and Pakistan

J. Sathaye and J.M. Weingart

January 1988



## GOVERNMENT POLICY AND MARKET PENETRATION OPPORTUNITIES FOR U.S. RENEWABLE ENERGY TECHNOLOGY IN INDIA AND PAKISTAN

Prepared by

Jayant Sathaye Jerome M. Weingart

International Energy Studies Group
Applied Science Division
Lawrence Berkeley Laboratory

January 1988

This work was supported by the Deputy Assistant Secretary for Renewable Energy, Director of Solar Electric Technologies, Office of Photovoltaics Technology and Deputy Assistant Secretary for International Affairs, Office of International Energy Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF000098.

## **CONTENTS**

| 1. | INI | RODUCTION                                                     | 1  |
|----|-----|---------------------------------------------------------------|----|
|    | 1.1 | Potential Developing Country Markets                          | 1  |
|    | 1.2 | Focus of the Report                                           | 2  |
|    | 1.3 |                                                               | 2  |
|    |     |                                                               |    |
| 2. | IND | DIA                                                           | 5  |
|    | 2.1 | Overview                                                      | 5  |
|    |     | Energy Background                                             | 5  |
|    | 2.3 | Government Policy                                             | 7  |
|    |     | Wind Energy                                                   | 16 |
|    | 2.5 | Solar Energy                                                  | 20 |
|    | 2.6 | Energy Efficient Lighting - Photovoltaic Market Opportunities | 25 |
|    | 2.7 | Urban Waste                                                   | 25 |
|    | 2.8 | Conclusions                                                   | 26 |
| 3. | PAK | CISTAN                                                        | 27 |
|    | 3.1 | Introduction                                                  | 27 |
|    | 3.2 |                                                               | 28 |
|    | 3.3 |                                                               | 31 |
|    | 3.4 |                                                               | 32 |
|    | 3.5 |                                                               | 35 |
|    | 3.6 |                                                               | 40 |
|    | 3.7 |                                                               | 49 |
|    |     | Present Renewable Energy Technology Markets                   | 52 |
|    | 5.5 |                                                               | 32 |
| 4. | TON | TES AND REFERENCES                                            | 53 |

## **ACRONYMS**

## India

CEL Central Electronics Limited

DNES Department of Non-conventional Energy Sources

GEDA Gujarat Energy Development Agency

GEB Gujarat Electricity Board

OREDA Orissa Energy Development Agency

SEB State Electricity Board

## **Pakistan**

ADBP Agricultural Development Bank of Pakistan

ATDO Alternative Technology Development Organization

DGNRER Directorate General for New and Renewable Energy Resources (within the

Ministry of Petroleum and Natural Resources)

KESC Karachi Electric Supply Corporation

N.W.-FP North-West Frontier Province

PCSIR Pakistan Council of Scientific and Industrial Research

UNDTCD United Nations Department of Technical Cooperation for Development

WAPDA Water and Power Development Authority of Pakistan

## 1. INTRODUCTION

Over the last several years the domestic market for U.S. renewable energy products and services has been eroding rapidly. The decline in the size and vitality of U.S. renewable energy markets reflects a number of factors in combination: the demise of the federal and various state tax incentives for investments in renewable energy systems, the decline in oil and natural gas prices, the emerging over-capacity in many electric utility systems, and the suspension of California's long-term standard offer power purchase contracts that provided predictable and attractive revenues for the sale of privately generated power to the state's public electric utility companies.

U.S. firms have been losing domestic market share to foreign competitors in the wind electric, solar thermal electric, and photovoltaic technology fields. In 1982 U.S. firms provided about 80 percent of the domestic installed wind generation capacity. As the annual wind energy systems market grew from 10 MWe in 1981 to several hundred MWe per year after 1982, U.S. wind firms have increasingly lost their competitive advantage, principally to Danish firms.

## 1.1 Potential Developing Country Markets

Some U.S. renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the U.S. competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, U.S. photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%.

Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons: the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones.

The cost of extending the electricity grid to meet small loads in remote regions is prohibitive. This, and the shortage of government capital for investment in new supplies of electricity, has stimulated some developing countries to explore the use of privately financed renewable energy for power generation.

The large foreign exchange outflow makes it difficult for many developing countries to import oil and petroleum products. Further, the poor infrastructure in most developing countries adds to the cost of these fuels and often increases their scarcity in remote areas, which can make the use of indigenous renewable energy resources economically attractive.

The renewable energy industries of industrialized countries are just beginning to penetrate the renewable energy market in the LDCs. Obstacles include the high first cost of most renewable energy systems, lack of adequate in-country financing mechanisms,

In Pakistan there have been limited experiments with wind pumps, photovoltaic water pumping, and United Nations-sponsored PV installations in a few villages. Micro-hydro projects have been successful and will be expanded, solar desalination is being revitalized for remote communities, and limited production of photovoltaic arrays has begun (Table 1-2).

Privately installed and maintained family biogas units are reported to be operating reasonably well, but the majority of the biogas systems that were installed by the government have fallen into disrepair. In spite of this experience, and the interest of various private and government organizations in renewable energy, there is no well-developed policy towards renewable energy in Pakistan, and the constraints on private sector initiatives in this field, both domestically and by foreign manufacturers, are formidable.

However, government policies in both India and Pakistan vis-a-vis renewables are constantly changing within the overall industrial and import policies adopted by the central governments in each country. A principal issue is the necessity for U.S. industry to have an adequate understanding of the present and likely near-term attitudes, actions, and policies of the relevant government agencies and institutions towards renewable energy, and the U.S. renewable energy industry in particular. This means knowing more than the official policies and rules of the target market countries; it means knowing the actual problems as well as opportunities, and being able to use this information to make informed business decisions.

Table 1-1

Renewable Energy Installations in India

| Type of System           | Number of Installations              |
|--------------------------|--------------------------------------|
| Wind Electric (4/87)*    | 3 MWe in 5 wind farms                |
| Water Pumps              |                                      |
| Wind (1/86)              | 1,192                                |
| Photovoltaic (11/86)     | 436                                  |
| Other PV Systems (11/86) | 3,584                                |
| Solar Hot Water (1/87)   |                                      |
| Industrial/Commercial    | 1,000 systems, 44,000 m <sup>2</sup> |
| Residential              | 1,170 systems, 2,600 m <sup>2</sup>  |
| Biogas Plants (4/86)     | 650,000 units                        |

Dates for data shown indicated

## Section 2

## **INDIA**

## 2. INDIA

#### 2.1 Overview

The gross national product (GNP) of India is one of the largest in the world, but with a population of 765 million the country's annual per capita GNP stands at about U.S.\$ 270. With the population growing at 2 percent per year and GNP growing at an average annual rate of 3-4 percent, the quality of life in India has improved at a relatively slow pace, although between 1980 and 1985, Gross Domestic Product (GDP) increased at 5.2 percent per year.

Agriculture remains the country's largest employment sector. It employs about 70 percent of the labor force and contributes 31 percent of Gross Domestic Product (GDP). Agricultural production increased at an average rate of 1.9 percent per year between 1960 and 1985. Production surged in the late 1960s and early 1970s due in part to the impacts of the Green Revolution, which made the country self-sufficient in grain production through improved use of hybrid seed, fertilizer and irrigation. During the past two years, the country has experienced a severe drought which will result in slower economic growth accompanied by stagnation in the agricultural sector.

Outside of the agricultural sector, India has created a relatively sophisticated industrial base with a large pool of technically skilled labor. The economy is a mixture of public and private enterprises. Industries in the public sector provide most of India's heavy capital infrastructure. Industry's share of the GDP has increased from 22 percent in 1965 to 27 percent in 1985 and that of private industry from 14.9 percent in 1970-71 to 20.4 percent in 1980-81.

The United States is India's largest trading partner. 10.8 percent of India's imports valued at \$2.2 billion came from the United States and 18.1 percent of its exports of slightly lower value went to the U.S.in 1985-86.

The Indian government is actively involved in managing the growth of the economy. A Planning Commission has been established to prepare five year plans for India's economic development. The Sixth such plan was completed in 1985 and the Seventh Five Year Plan is being implemented at present. Annual plans are also prepared within the context of the five year plans and to help achieve the growth targets set forth in the longer plans.

## 2.2 Energy Background

Substantial reserves of recently discovered off-shore oil and gas combined with the large reserves of domestic coal provide the bulk of modern fuels to the Indian economy. Coal production increased from 103.2 million tons in 1978-79 to 154.2 million tons in 1985-86. The coal has low heating value with 20-40 percent ash content, and its quality is deteriorating; in energy terms it is equivalent to about 77.1 million tons of oil. Coal is used mainly in industry and for electric power generation. Small amounts of coal are also used for cooking. The increase in coal output has been as impressive as that in oil. This has helped the country achieve substantial increases in thermal power generation.

A new pipeline is under construction to move the gas from offshore to Northern India. This would make gas available for fertilizer complexes and power plants along the 800 mile route. The first phase of the pipeline was completed recently. Completion of the second phase will virtually eliminate the flaring of natural gas. Because the infrastructure for distributing natural gas tends to be expensive, gas use will be restricted to areas around the main pipeline and along the Indian west coast.

Historically, the acute shortage of electric power has been a pressing problem. This is manifested by frequent power cuts, voltage and frequency fluctuations and frequent load shedding. As of April 1, 1986, Indian public utility companies had 46,769 MWe of installed electrical generating capacity<sup>1</sup>. During 1985-86, India experienced an overall deficit in peak power supply of 24.2 percent and in electric energy supply of 14.9 percent<sup>2</sup>, despite the addition of 4200 MWe of new electric capacity. These deficits are projected to improve through rest of the decade. By 1989-90, the end of the current five year plan, deficits are projected to be 19.0 percent and 5.4 percent respectively. Many states, however, experienced significantly higher peak power deficits. Haryana had deficits of 37.9 percent; Jammu and Kashmir had 65.7 percent and Uttar Pradesh, 45.1 percent. Power deficits led to massive industrial cutbacks, the estimated cost of which was several billion dollars in 1985-86.

Widespread power shortages have driven industries to install their own captive power stations, usually small diesel generating sets. These units tend to be operationally and economically inefficient and require increased imports of oil at a time when oil imports are already consuming 40 percent of scarce foreign exchange reserves. Despite its high cost to industry and the Indian economy, captive power capacity increased sharply from 2,859 MWe in 1979-80 to 5,100 MWe in 1985-86. The government estimates that captive power will increase another 40 percent to 7,056 MWe by 1990. Renewable energy sources can help in reducing current and projected power and electricity deficits and in displacing captive diesel generating sets.

#### 2.3 Government Policy

## Industrial Policy

Indian industrial growth since independence has been driven overall by the protectionist policies of import substitution. Protection of indigenous industry was justified on the grounds that it would enable industry to become competitive in production and marketing with non-indigenous producers. This policy protects local product manufacturers either by prohibiting the import of competitive goods or by placing a high import duty on goods that make them unattractively priced.

India's protectionist policy has not produced a competitive world class industry. After almost thirty years of industrial and scientific investment, India's share of world industrial output has fallen from 12 percent in 1950 to 3 percent in 1980. During that same period, India fell from 10th place to 27th place of ranked industrial powers.

Until recently, trade with and investment by foreigners was discouraged. The Indian Industries Development and Regulation Act (1951) required industry to obtain a license for establishing a new firm and for expansion of capacity and the manufacture of a new product. The allocation of licenses was aimed to disperse industry across the country within the demand limits projected by the government. Further, certain products were

The mix of instruments and institutional mechanisms for technology transfer has until now been strongly biased towards licensing, technical assistance and other arms-length transactions. Direct foreign investment still appears to be viewed in India as an inferior approach to technology acquisition, although international experience in Korea, Brazil and other countries indicates that technology in these countries has modernized significantly from direct acquisition.

Indian trade policy is formulated<sup>5</sup> by senior officials of the government and administered by the Indian Ministry of Commerce. As of April 1, 1985, the official Indian fiscal policy is now issued every three years. The current policy is valid through March 31, 1988. The freer import of renewable energy technologies, such as wind and PV, may change at that time.

## Energy Policy

India's response to the increases in international oil prices was similar to that of other oil importing countries. First, the government allocated a large share of resources to development of oil, coal, and power generation, and implemented policies supporting this effort. Second, in order to limit growth of oil consumption, the government implemented measures to better manage oil demand and find substitutes for oil.

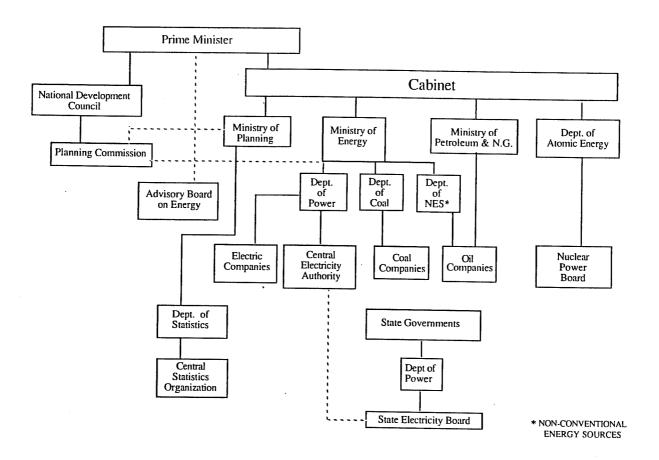
The development of indigenous energy resources was accorded a high priority within the Indian government after 1973/74 (Table 2-3). In the Fourth Five Year Plan, the energy sector, petroleum, coal and electric power, received only 18.0 percent of the budget allocation and electric power received 15.4 percent. This allocation increased substantially in the following two plans. In the Fifth Plan, it increased to 25.0 percent and in the Sixth Plan to 27.1 percent. The share of funds going to petroleum increased from 1.9 percent in the Fourth Plan to 4.3 percent in the Fifth Plan, and that to electricity increased in each plan reaching a level of 19.8 percent in the Sixth Plan. In the Seventh Plan the outlay for energy has been increased to 30.1 percent of the budget.

The Indian government administers prices in the energy sector. In addition to setting prices it also levies tax and other duties differentially on each fuel. The pricing policy has multiple objectives of fair return to the energy producing units, encouraging prudent use of fuels, especially oil, and the supply of energy to consumers at lowest possible cost. However, in practice and in the absence of an integrated energy pricing policy, ad hoc changes in prices have resulted in economic distortions. The resulting price subsidies for certain petroleum products (kerosene) and electricity discourage the penetration of renewable energy sources.

In order to manage the demand for petroleum, the government has raised prices of all the fuels continually since 1979 (Table 2-4). The price of petroleum products was raised even as the price of crude oil collapsed in early February 1986. However, prices of petroleum products have not been raised equally. The government subsidized the prices of kerosene and diesel and increased taxes on gasoline and fuel oil. This resulted in rapid increase in the use of kerosene and diesel, causing a mismatch in the mix of refinery products and demand. Compared with international prices, kerosene price is subsidized whereas diesel price have been higher than international prices since 1982. This has led to the renewed use of kerosene as a substitute for diesel in many applications in transport and industry.

The price of electricity increased at about the same pace as the wholesale price index (WPI) between 1971/70 to 1982/81 (Table 2-5). Electricity prices were increased sharply in 1983/82 period and again in 1986/85. In the four years since 1982, electricity price increased faster than the wholesale price index. The price increases were not uniform across sectors.

The agriculture sector is particularly excluded from these price increases, which contributed to 11.1 percent annual increase in electricity demand in this sector between 1970 to 1984 compared to 6.8 percent increase in overall electricity demand. Agriculture's share of electricity demand increased from 10.2 percent in 1970-71 to 19.1 percent in 1985-86. More important, as we show later, the introduction of small wind and PV pumping systems is hampered by the subsidized prices for electricity to the farmer.


Table 2-5
Electricity Price Index in India

| Period  | Electricity Price<br>Index | Wholesale Price<br>Index |
|---------|----------------------------|--------------------------|
| 1970/71 | 100                        | 100                      |
| 1980/81 | 238                        | 248                      |
| 1982/83 |                            | 285                      |
| 1985/86 |                            | 344                      |
| 1986/87 |                            | 372                      |

Source: Government of India, Ministry of Finance (1987). Economic Survey, 1986-87. p. 48

Several advisory committees have been established over the years to guide the government policy makers in implementing the two-pronged strategy (Table 2-6). Recently a high level Advisory Board on Energy was established; its chairman reports to the Prime Minister of India. Figure 2-1 shows the organization of the various government ministries and departments concerned with development of energy policy and implementation of energy production and management of demand. Although there is no single agency in charge of energy conservation, the government recently appointed a special advisor to the Cabinet for this function.

Figure 2-1
ENERGY PLANNING ORGANIZATION - INDIA



Source: U. Kohli, Energy Advisor, Planning Commission. Presentation at the ADB/IEA Data Workshop, Tokyo (September 1987)

Table 2-7

Allocation of Indian Central Government Funds
for Energy Technology Development and Application
(percent)

| Energy Technology                             | Sixth Plan<br>(Actual Expenses) | Seventh Plan<br>(Outlay) |  |
|-----------------------------------------------|---------------------------------|--------------------------|--|
| Biogas                                        | 57.9                            | 48.5                     |  |
| Solar Energy                                  | 19.0                            | 14.3                     |  |
| Photovoltaics<br>Solar Thermal (non-electric) |                                 | 6.5<br>7.8               |  |
| Wind                                          | 2.2                             | 4.9                      |  |
| Improved Stoves                               |                                 | 9.7                      |  |
| Biomass                                       |                                 | 6.0                      |  |
| Urban Waste                                   |                                 | 3.4                      |  |
| Others                                        | 20.9                            | 13.2                     |  |
| Total                                         | 100.0 %                         | 100.0 %                  |  |
| Total (U.S. \$)                               | \$163 million                   | \$400 million            |  |

As a general rule, technical products that ensure import savings or generate export earnings are given favorable consideration for import licensing. Equipment for exploitation of alternative energy sources such as solar insolation, wind power and geothermal energy are exempt from this licensing requirement. In addition, the production of amorphous silicon solar cells is one of the eight designated technology missions of the Indian government.

The principal tax incentive for manufacturers of renewable energy systems is enhanced depreciation. Normal depreciation available to industry is 30 percent. Manufacturers of new and renewable energy systems qualify for an additional 15 percent during the first year. Institutional credit is available at a lower interest rate which in 1985 was 12.5 percent. For some technologies manufacturers may qualify for as much as 100 percent depreciation in the first year.

DNES wants to promote local capacity to assemble and manufacture wind systems and has therefore encouraged joint ventures with Indian companies. Previously, total wind turbine systems were exempt from customs duty, but individual components were not. Now components are also exempt, which will encourage the use of local components and enable manufacture of hybrid systems using appropriate foreign components. This would allow U.S. manufacturers to enter the market with technology which is best suited and appreciated in India.

Wind manufacturers enjoy several tax exemptions and subsidies. Capital equipment can be depreciated 100 percent in the first year and until March 1988 wind technology imports are exempt from customs duties. The India Renewable Energy Development Bank provides 5.5 percent financing with 7 year repayment and interest moratorium in the first two years. Direct grants are available from DNES for 10 to 75 percent of the cost of the project. The Industrial Development Bank also makes 5.3 percent loans and several state finance corporations offer 10 year loans with a moratorium on the interest payments for two years.

## Penetration, Economics and Financing

There are five major windfarms in operation in India with a total capacity of 3.3 MWe. The location, name of the manufacturer, size and number of units in each windfarm are shown in Table 2-9. Among these windfarms, the Mandavi, Tuticorin and Okha windfarms have been the better performers with plant factors ranging from 0.17 to 0.22; those at Puri and Deogarh have performed less well. The Mandavi system is producing electricity at the rate of 1.7 million kWh a year. The installation cost<sup>7</sup> of the Mandavi system is about \$1,300 per kW.

The Okha windfarm was set up using funding from DNES, the Gujarat Energy Development Agency (GEDA) and the Gujarat Electricity Board (GEB). It has reportedly performed very well with only a 0.9% down time during the past 15 months. The system was expected to generate 1.21 million kWh per year, but because of load shedding which cut off electricity to the feeder thus interrupting the windfarm, it generated 0.95 million kWh of electricity between April 1986 and March 1987.

Electricity from the system was expected to cost\* Rs. 1.24 per unit in the first year declining to Rs. 1.08 in the tenth year but the actual cost in the first year will be higher because of lower than expected generation of electricity. GEB has agreed to buy the electricity at Rs. 1.25 per kWh although this is more than their cost of generation (Rs. 0.8 to 0.9 per kWh., of which the fuel cost is estimated at Rs. 0.45.) The marginal cost of electric power bought from the neighboring state of Maharashtra is Rs. 0.94 per kWh.

<sup>\*</sup> Rupee is the currency used in India. Its value has decreased relative to the dollar over the last few years. In this report, we have used an exchange rate of US\$ 1 = Rs. 10 for the Sixth Plan period, 1980-85, and US \$1 = Rs. 13 for the Seventh Plan period, 1985-90.

The operator of the machine was insured by Danish banks against failure to generate the stipulated amount of electricity. For example, if the machine did not generate sufficient electricity because of technical problems, such as the breakdown or overloading of the generator, or even because of lack of adequate wind speed then the insurance company makes up for the loss of revenue incurred by the operator. In order to provide such a complete coverage the Danes conducted the initial feasibility study to ensure adequate wind resource conditions for the generation of electricity, and trained operators in Denmark to ensure adequate capability to provide on-site maintenance and repair. There are no Danish staff at the site once the trials are completed.

Despite Danish efforts, their wind machines have faced start-up problems. For example, in Orissa, these have included siting of the machines at low-wind regime sites, burning out of the small 5 kW generators on 8 of the 10 machines and unanticipated, though minor, corrosion because of higher humidity and temperature conditions in India. The machines are being moved to a new site and more generators are being shipped to India.

The complete guarantees were offered as an introductory package and the Danes are no longer providing complete coverage of the machines. This affords the U.S. manufacturers an opportunity to enter the market. However, the Indians perceive that the U.S. machines are designed for a higher cut-off wind speed than the average found in India while the Danish machines are designed to operate at lower speeds. This perception will have to be overcome to enter the Indian market.

The Danish government recently allocated 250 million kroner (about \$75 million) in foreign aid funds to finance several additional wind and solar projects<sup>9</sup> in India. DANIDA has asked Danish manufacturers to submit bids for the projects.

In addition to the large windfarms, there is also a substantial market for small windpumps in the country. In March 1985, there were 3.5 million diesel irrigation pump sets and 5.7 million electric pump sets installed in the country. There were 1192 water pumping windmills and 343 photovoltaic units as of January 31, 1986. The Seventh Plan calls for 3 million new pump sets to be installed at an estimated cost of \$2.5 billion. The corresponding investments in electric power will be around \$15 billion to supply electricity to these pump sets. Windpumps can meet a small fraction of this demand and 500 to 1000 units per year can be expected. Although only indigenously manufactured units are expected to be installed, the need for more efficient pumps and other components presents an opportunity for U.S. manufacturers of small windpumps. Bergey Wind Power recently entered into a licensing agreement to produce 1 kWe wind generators in India.

Judging from the rapid growth of wind farms, the establishment of nodal agencies and the removal of import restrictions on renewable energy equipment, the government appears committed to providing the incentives necessary for rapid commercialization of wind systems. Financial and import licensing incentives are substantial for domestic production and collaboration with foreign manufacturers. There is as yet no legal framework analogous to PURPA that would force the state electric utility boards to purchase electricity from private and para-statal producers of electricity, although DNES is presently pushing the adoption of such a statute in the Indian parliament. Until that happens, the best markets will be in the states where the SEBs have progressive attitudes towards sharing the generation of electric power with other producers. SEBs in Gujarat and Orissa seem better disposed towards allowing non-SEB renewable power generation.

Table 2-10

Photovoltaic Systems Supplied by the
Central Electronics Laboratory (CEL) of India
(As of mid-November 1986)

| Systems                               | Number |
|---------------------------------------|--------|
| Rural Water Pumping                   | 436    |
| TV/Lighting Systems                   | 258    |
| Rural Lighting Systems                | 52     |
| Stand-Alone Street Lighting           | 3,191  |
| Offshore Platforms (PV Power Sources) | 17     |
| Other                                 | 66     |

Source: Urja Update, Vol. IV, No. 2, June 1987.

The government has now terminated the contract with Hemlock. The Metkem product has been approved by BHEL and CEL. CEL agreed to purchase all the silicon produced by Metkem during 1986-87, despite the quoted price being double the international price. The Metkem price for polysilicon is about Rs. 850 per kg.

In order to protect the new domestic industry, the government has levied a customs duty of 30 percent on the import of silicon wafers. This along with the lower value of the rupee has resulted in an increase in the market price of PV cells and modules by 10-15 percent. During the controversy it was argued that the capital cost of the Metkem plant will be less than that of the NSF facility. The higher price of silicon does not bear that out.

Bhatia<sup>11</sup> has estimated the total costs (capital costs and present value of operating costs) for providing irrigation to a 2.5 acre and a 1 acre farm in Northern India using a variety of power systems (Table 2-11). For smaller farms, against market (subsidized) prices of grid electricity and diesel fuel, a PV system currently available in India (costing \$11.75 per peak watt and having 3.4% efficiency) is twice as costly as a diesel engine and over three times as costly as grid electricity. A future PV system costing \$4.50 per peak watt and having 4.6% efficiency is projected to be 35% less costly than the diesel engine and only 22% more costly than grid electricity.

In a similar comparison of grid extension versus the use of stand-alone PV systems for street lighting and other smaller loads in villages, Bhatia concludes that for villages as close as 5 km. from the grid, if the total demand is of the order of 2 kilowatts, PV systems are clearly economic at current costs and efficiencies (Figure 2-2).

A recent World Bank/UNDP study<sup>12</sup> compared the cost of PV with other options for supplying electricity for village applications. It concluded that both small PV and wind pump sets present lower cost options for village water supply than diesel or wood gasifiers in low lift (8 to 15 meters) applications. The main reason is that PV and wind pump sets can be sized to meet a constant daily demand and do not need to be oversized to meet a peak demand.

In its comparison of costs of various energy systems, the World Bank/UNDP study assumes installed cost of PV arrays, excluding installation cost of about \$2 a peak watt, to be \$12 per peak watt. However, a recent assessment of different options for rural water supply quotes comparable cost of arrays installed in 1986 at \$7 per peak watt. This would make PV options substantially more cost effective and improve their economic viability for irrigation pumping.

Penetration, Economics, and Financing: Solar Hot Water Systems

A large market is anticipated in India for solar hot water (SHW) systems. By January 1986, there were 760 systems installed in the country. A year later, these had grown to 2,170 installations, about 1,000 of these <sup>14</sup> were for commercial and industrial applications. In terms of collector area, the residential systems amounted to 2,600 m<sup>2</sup> and the commercial and industrial systems to 44,400 m<sup>2</sup>.

With the active participation of some of the nodal agencies and DNES financial subsidies channelled through these agencies, the market potential is large. In actual practice, since money is transferred from the customer through the nodal agency to the manufacturer, who has to procure a certificate to validate the operation of the installed water heater system, the opportunity for corruption is substantial. The fear is that this may destroy the fledgling industry before it has a chance to take off.

An economic analysis of a SHW system compared with an electric geyser, each delivering about 100 liters per day of 60 degrees centigrade hot water, shows that without subsidies for either electricity or the SHW system, an advanced SHW system would have a payback period of about 5 years. With market price of electricity and a 50 percent subsidy for the SHW system, this reduces to 3 years. 15

Although the Indian government restricts the import of SHW systems, private Indian companies are importing components to assemble SHW systems in India. One such company, Solar Energy Conversion Devices, is importing absorber panels made by Furukawa of Japan, and Tedlar glazing made by Dupont of the U.S.

## 2.6 Energy Efficient Lighting - A Potential Market Entry Opportunity for Photovoltaics

Although, the main focus of this report is on renewable energy technologies, high luminosity low wattage lamps as replacement for incandescent lamps will be a major and much larger new market in the energy arena. As described earlier, the peak demand for electricity is not fully met in most parts of India. Peak load on most utility systems occurs between 5 and 9 pm when there is a sharp increase in the use of lighting by domestic and commercial customers. The Seventh Plan projections indicate that even with new capacity additions, peak loads will not be fully met during the next few years.

A recent study<sup>16</sup> concluded that the introduction of low-power high-luminosity fluorescent lamps, which are commercially available in the U.S. and Europe but are not made in India, would reduce the need for 10,800 MW or 23 percent of presently installed capacity. The annual rate of return on expenditure for lamp substitution in electricity saved would range from 45 to 55 percent.

The market for incandescent lamps in India is very large; about 300 million lamps are produced annually. At \$10 for a low-power high-luminosity lamp the market is about \$3 billion. At present, the import of capital equipment for production of these lamps attracts heavy customs duty. The study shows that it is in the interest of the country to reduce this duty. Packaged with PV systems, such lamps would provide at least a three-fold advantage over the cost figures cited in Figure 2 for PV systems. Even at the low efficiency levels and high cost of PV systems in India, such packages would become attractive for villages close to the grid. The introduction of such lamps not only in India, but in other countries as well, offers a strong opportunity for U.S. manufacturers.

## 2.7 Urban Waste

The Seventh Plan allocates \$10.8 million dollars for the urban waste area. About 70 percent of the funds will go for RD&D. Electric power generation from municipal waste and agricultural residue and forest matter has been determined to be economical. DNES will provide 20 percent of the investment cost as an outright grant to the developer. It will assist the developer in seeking financing for such a project from local banks and request that these projects receive a low interest loan which DNES will reimburse the developer. These loans are generally reserved for the priority sector. Essentially the developer will receive an interest free loan.

A recent study<sup>18</sup> by Blevis and Shrivastava for the U.S.Trade and Development Administration (TDP) concluded that this was one of the priority areas for U.S. participation. Accordingly, TDP plans to conduct a feasibility study in the major urban areas to select a location for a possible 10 to 50 MWe generation plant. Westinghouse has a process for using low-Btu materials which may be amenable to using municipal waste from LDC urban areas. These have a higher organic content compared to those in a developed country. The location choice will depend on the attitude of the local SEB. Tamil Nadu state appears to have a more progressive SEB which may be willing to purchase electricity from a private power developer.

## Section 3

## **PAKISTAN**

#### 3. PAKISTAN

#### 3.1 Introduction

Pakistan<sup>19</sup> is a developing country of 93 million people, with a per capita GNP of roughly \$300. Adult literacy is well below 50%, and less than 10% of the rural population has access to electricity; two-thirds of the total population have no reliable access to clean water. Moreover the population growth rate is close to 3%/year, diluting the benefits of economic growth. The Government of Pakistan is planning to accelerate the development process, including electrifying all of the non-electrified settlements over the coming decade.

The energy sector has become a major area of concern and a target of new investment, lending, and assistance by the Government of Pakistan, bilateral agencies such as USAID, and the multilateral development banks. During the period 1982 - 1987 (corresponding to the Sixth Five-Year Plan period) almost 40% of all public sector investments were made in the energy sector, and commercial energy supply grew at 8.6%/year. Energy demand, especially during the peak winter months, has continued to outstrip supply, resulting in growing shortages of natural gas and electricity, (with shortfalls of 1,000 MWe in a system of 7,000 MWe), and increasing imports of petroleum products. During this period energy imports increased from \$0.5 billion in FY78 to \$1.5 billion in FY84, equivalent to 23% of total imports and 55% of total exports.

Growing energy imports and the need for continued expansion in commercial energy supply is a considerable concern to the Government of Pakistan. As the draft Seventh Five-Year Plan<sup>20</sup> points out:

The energy needs of the country are mounting at an exponential rate and are bound to do so for an indefinite period of time. ... It is, therefore, imperative to evolve a viable national energy system -- a system which overcomes the energy shortage of today, has the potential to cope with the vastly expanded requirements of tomorrow, relies chiefly on indigenous resources of energy, but does not involve a level of dependence on fuel imports which enfeebles the national economy, nor taxes it so much that other sectors are deprived of requisite investments. This, in short, is the energy challenge which has to be met adequately for a self-reliant and prosperous Pakistan.

The indigenous resources referred to here are principally coal, hydropower, and natural gas. However, there is a growing interest by the Government of Pakistan in the potential of renewable energy resources<sup>21</sup> (besides hydropower) to make an important long-term contribution to the nation's energy supply, and in the near term, to contribute to improvement of the quality of life and to economic development in rural areas of the country.

<sup>\*</sup> The United States, through USAID, provides the largest bilateral support to Pakistan.

Table 1
ENERGY RESERVES AND PRODUCTION
(1985/86)

| Resource              | Reserves   | Production  | R/P Ratio |
|-----------------------|------------|-------------|-----------|
| Coal (Million tons)   |            |             |           |
| Measured              | 198        |             |           |
| Indicated             | 187        |             |           |
| Inferred              | 863        |             |           |
| Total                 | 1,250      | 4.1         | 305       |
| Oil (Million Barrels) | 154*       | 15.6        | 10        |
| Natural Gas (BCF)     | 15,200     | 464         | 33        |
| Hydropower Potential  | 30,000 MWe | 2,547 MWe** |           |

<sup>\*</sup> As of July 1987

## Solar Radiation

Pakistan is a sunny country, with annual global insolation of 5-6 kWh/m<sup>2</sup>-day. Figure 3-1 shows the results of measurements reported over a 3-year period in the mid-1970s for Karachi. While not definitive, the numbers are representative for most of Pakistan.

## Wind Energy

There are some regions of Pakistan where there is sufficient wind energy during at least four to five months of the year to justify use of wind systems for water pumping, for shaft energy, and in some cases for power generation. In particular the windy coastal areas of Pakistan in the South and South-west are extremely dry and lacking in power for pumping groundwater. During the 1960s the Pakistan Water and Power Development Authority (WAPDA) supported a pilot windmill project using six wind mills provided by the Government of Australia. Three of the mills were set up in Baluchistan and three in Sind. Wind data for Sind are shown in Figure 3-2. The wind conditions shown<sup>23</sup> would be considered economically marginal at best for power generation in California but may be economic for water pumping in Pakistan.

<sup>\*\*</sup> As of 1984

#### Biomass Resources

Cow dung, firewood, and crop residues are widely used in rural areas for cooking. The most significant agricultural residues in terms of biomass production are sugarcane, wheat (straw), and rice (hulls). Annual production of rice paddy in Pakistan was 3.4 million metric tonnes in 1982 and yielded about one million metric tonnes of rice hulls. These can be used effectively as a rural fuel source for rice mills even though their overall contribution to commercial energy consumption would be at best on the order of 0.25 million tonnes of oil equivalent annually, equivalent to 1.5% of national energy use.

### 3.3 Energy Supply and Demand

In 1982/83 the total primary energy consumption<sup>24</sup> in Pakistan was estimated at 23 million tons of oil equivalent (MTOE), of which roughly one-third was in the form of non-commercial energy including firewood, charcoal, agricultural crop residues, and cow dung. Commercial energy consumption was divided among natural gas (39%), oil (39%), coal (5%), hydropower (17%), and a small amount of nuclear and other energy sources (0.6%). In the five-year period from 1979-80 to 1984-85 overall commercial energy consumption has increased at 7.8% per year (9 year doubling time). This corresponds to a per capita commercial energy consumption of 0.16 toe per year, or approximately 225 W(th) per person. By contrast, the world per capita consumption is roughly 2 kW(th), for Western Europe is in the range of 3 - 6 kW(th), and for the U.S. is about 12 kW(th). Sectoral energy demand from 1979-80 to 1984-85 is shown in Figure 3-3.

Figure 3-3
Sectoral Structure of Energy Demand in Pakistan

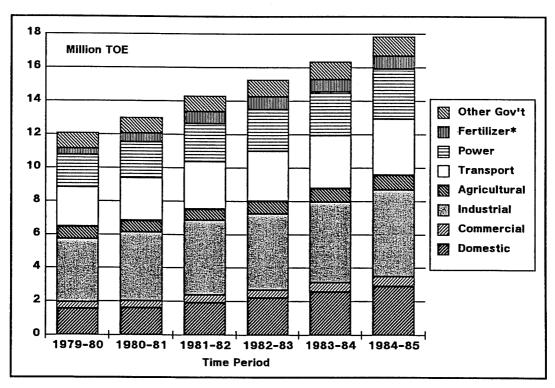



Figure 3-5

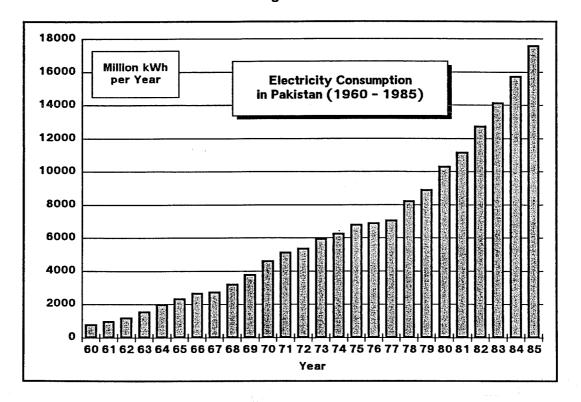



Figure 3-6

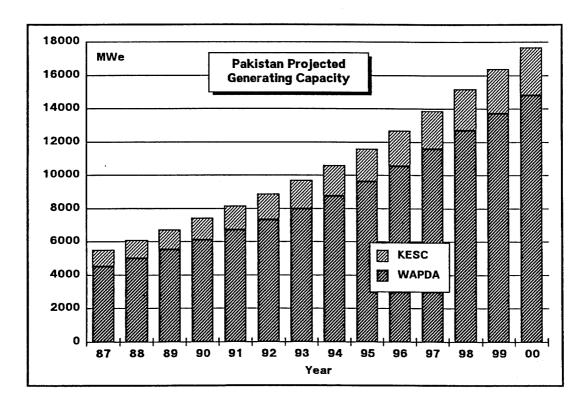
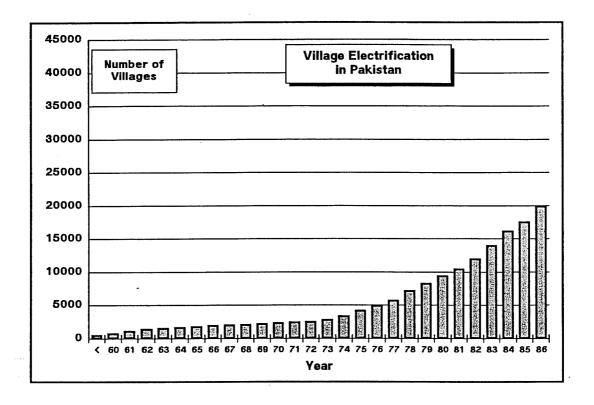




Figure 3-8



#### Diesel Power Systems in Pakistan

Diesel power is used in Baluchistan, but diesel units have many problems. The units used are high-speed diesel engines; they require maintenance facilities and only last a few years. Pakistan's experience with diesel power has not been very satisfactory. In Baluchistan, with units in the range of 100 - 200 kWe (and a few at the level of 500 kWe) the unsubsidized kilowatt-hour price of electricity is greater than Rs 2. There are also some gas turbines producing electricity at Rs 2.35/kWh. Small diesel units, in the range of 10 - 500 kWe, are produced in Pakistan. Medium-size diesel generators, in the range of 300 kWe to several MWe are generally Japanese, with some German (Siemans) and Chinese units as well. These larger units cost Rs 14,000/kWe (\$800/kWe) and the total cost of electricity production is in the range of Rs 2 - 3, including capitalization of the equipment.

## 3.5 Energy Policies and Practices

Pakistan's energy plans and policies are embedded within the framework of national planning, which centers on the Five-Year Plans. The Sixth Plan period, from 1982/83 to 1987/88, is almost ended, and the Seventh Five-Year Plan is being drafted.

#### Table 3-2

# PROPOSED INCENTIVES FOR PRIVATE SECTOR POWER GENERATION IN PAKISTAN

- o Designation of specific areas for private power sector projects
- o Definition of power purchase conditions by WAPDA
- o Assignment of a major portion of the Lakrha coal fields for private power generation
- Designation of selected dormant gas fields for private sector power development

## Rural Uplift Program

In October 1987 the Minister of Planning announced that Rs 23 billion (\$1.4 billion), spread over three years, would be spent on the rural uplift program. The components of the program are summarized in Table 3-3. According to the plan, electricity will be provided to 4,208 villages. Clean water will be provided to an additional 8 million people. Thirty-five new rural health centers will be established. However the means to accomplish this are unspecified.

Conversations with Pakistani planners charged with developing the implementation plan for the rural uplift program indicate that they would be very interested in advice from U.S. renewable energy industry and government experts regarding the post effective ways to use renewable energy technologies to help achieve these goals.

This program, if it can be implemented, should provide significant opportunities for renewable energy technologies. However, the development and effective implementation of this effort will require cooperation with and support from the U.S. and other donor nations. In this area, the U.S. renewable energy industry and the relevant U.S. Government agencies (e.g. USAID, Department of Commerce, Department of Energy) can work together with the Government of Pakistan to develop effective renewable energy-based packaged systems that can couple renewable energy sources of electricity to end-use needs for remote settlements. These needs include reliable access to clean water, illumination systems for street lighting, community centers, dispensaries, and homes, irrigation pumping, and communication.

#### Table 3-4

## RENEWABLE ENERGY TARGETS FOR PAKISTAN DURING THE 7TH FIVE-YEAR PLAN PERIOD (1988 - 1993)

| TECHNOLOGY                                    | TARGETS                              |
|-----------------------------------------------|--------------------------------------|
| Fuelwood augmentation                         | 30 - 50,000 hectares                 |
| Mini and micro-hydro plants                   | Total of 10 MWe                      |
| Improved cooking stoves                       | 1 million units                      |
| Photovoltaic installations                    |                                      |
| Dispensaries Households Water pumping*        | 125 units<br>1,000 units<br>20 units |
| Demonstration solar water heaters             | 500 units                            |
| Other solar thermal installations             |                                      |
| Water purification & desalination Crop drying | Not specified<br>Not specified       |
| Biogas installations                          | 4,500 units                          |

Source: Government of Pakistan (August 10, 1987). Energy Chapter of the Seventh Five-Year Plan (DRAFT).

\* This is listed elsewhere in the draft Plan as 20,000 units; 20 (twenty) seems to be the correct figure.

## 3.6 Renewable Energy Activities and Market Opportunities

#### Introduction

Renewable energy research and development has been pursued at a very modest level in Pakistan over the past twenty years. In spite of the potential for rural applications in regions where the grid is unlikely to extend for a decade or more, the development of an indigenous capability for production of renewable energy equipment has been essentially ignored. The effort supported by the Government of Pakistan, until recently, has essentially been at the level of "tinkering" with simple devices such as solar cookers, water heaters, and primitive wind turbines. Only in one renewable energy area -- that of photovoltaics -- has there been an attempt to develop relatively modern facilities for the production of silicon solar cells and photovoltaic arrays. In addition, a substantial one time investment was made in the development of a large-scale solar distillation unit for community fresh water supply in Baluchistan.

Government of Pakistan to develop inroads into the rural electrification and rural uplift programs. With the exception of a few ARCO Solar panels purchased by the Government of Pakistan for test purposes, BP Solar presently has the PV market to itself. Other areas in which there are cottage industries are microhydro power plant components and improved cook stoves.

In October 1986 one of the authors (JMW) conducted an extended mission<sup>25</sup> in Pakistan for the United Nations, to assess the requirements for a renewable energy institute being proposed by the Government of Pakistan. In consultation with a number of local officials and energy experts, a list of priority areas for rural and commercial applications of renewable energy technologies was drawn up. Priority areas for application of renewable energy technologies are shown in Table 3-6 for decentralized use and in Table 3-7 for commercial applications. In none of these areas are there well-established markets, and those that do exist are essentially government markets.

Only with micro-hydro development and family biogas systems has there been real success in diffusion of the technology, and this has been due to the capabilities and energies of a very small number of skilled individuals working with local communities and artisans rather than to a major government-supported R&D and commercialization effort.

#### Solar Desalination

Pakistan has extensive regions where the local population has no reliable access to clean water. Consequently there has been a strong interest in solar desalination for several decades. Pakistan has one of the largest solar distillation units in the world. It was designed and installed at Gwadar, Pakistan with United Nations support, under the direction of the Pakistan Atomic Energy Agency in collaboration with Greek experts. The system was designed to produce 6,000 gallons per day of fresh water. Although it was to be maintained by the Pakistan Coast Guard, the unit has fallen into disrepair, and is now being refurbished and recommissioned by the PCSIR Solar Energy Centre in Hyderabad. Simple family-sized solar distillation units have been developed by the PCSIR Solar Energy Centre in Hyderabad and will soon be test marketed.

There are many situations in which much larger units are needed to serve whole communities. More advanced systems could also be introduced in Pakistan, similar perhaps to the sophisticated system in operation<sup>26</sup> in Abu Dhabi. Completed in October 1984 the plant provides an annual average production of 80,000 liters per day on a site 100m by 105m. The plant was built as a joint project of the Ministry of International Trade and Industry (MITI) in Japan and the Ministry of Petroleum and Mineral Resources in the United Arab Emirates. The system incorporates evacuated glass tube solar collectors to maximize solar energy collection. Unlike the simpler distillation units built in Pakistan the plant also requires electricity – about 20 kWe (7 Wh/liter).

The opportunity for U.S. industry reflects the need for reliable access to clean water, not the explicit need for solar desalination units. Integrated PV or wind-electric and wind-mechanical powered systems for pumping, filtration, purification, storage, and delivery of clean water, at the community level from small villages to large towns, are a potentially significant commercial option.

#### Table 3-7

## PRIORITY COMMERCIAL APPLICATIONS OF NEW AND RENEWABLE ENERGY TECHNOLOGIES IN PAKISTAN

Climate-appropriate building design, including passive solar architecture (residential, institutional, etc.)

## Solar thermal systems

- Water heating (hotels, hospitals, residences)
- Space heating (room air heaters)
- Desiccant cooling
- Absorption refrigeration
- Industrial process heat and preheating

Solar thermal electric (grid-connected power generation)

#### **Photovoltaics**

- Communications (e.g. microwave repeaters)
- Cathodic protection
- Other small-scale, high-value markets
- Grid-connected bulk power (if price goals can be achieved)

## Wind energy conversion

- Wind electric (grid-connected)
- Wind pumpers for irrigation and draining water-logged areas (e.g. in lower Sind where major investments in drainage are underway)

#### Microhydro Power Plants

The installation of small hydropower plants in Pakistan is organized by the Appropriate Technology Development Organization (ATDO). ATDO is concentrating on high-head medium discharge sites and low-head high discharge sites. To date ATDO has installed 63 plants in northern Pakistan. These installations range from 3 to 20 kWe. Twenty five new sites have been identified, and work is on progress on twelve of these.

ATDO also provides technical guidelines with regard to assessing the potential for the sites selected, meets 25 - 50% of the initial costs, and trains the operators. Maintenance is the responsibility of the village cooperatives that operate the plants. They collect (monthly) Rs. 1 - 2 per bulb (40 - 60 watts). The installed cost of the plants is in the range of Rs 4,000 - Rs 5,000/kWe (\$230 - \$275/kWe). The extremely low cost reflects the virtually total local content in labor, materials, and equipment. Additional

An essential aspect of this work is that an integrated technology package, not just the power plant, is provided to the local villagers. This means that integrated end-use items must be developed, both electrical and mechanical, the latter directly coupled to the shaft horsepower developed by the plant. This approach is directly relevant to the establishment of photovoltaic-based rural micro-grids in rural settlements, and an innovative program to establish such systems in Pakistan could be developed in concert with Prof. Abdullah's group.

## Conversion of Human, Animal, and Agricultural Wastes to Methane

There is extensive and decidedly mixed experience<sup>28</sup> with the use of methane digestors to convert human, animal, and agricultural wastes to methane. The Government of Pakistan has invested in thousands of biogas plants. Most of these plants are no longer working. On the other hand, privately built plants (over 450 in Sind alone) are nearly all operating. In the latter case there is a technician who provides ongoing technical assistance to these plants.

The further development of effective plants to make use of animal wastes, both in rural areas and at centralized livestock facilities appears worthwhile, both in terms of public health and environmental considerations, and economically as well. Strong interest has been expressed by the USAID office in Islamabad supporting a program to develop and commercialize such technology for use at these centralized feedlots, poultry farms, and other similar installations.

Commercial opportunities for U.S. industry are in modern systems to convert animal wastes at centralized livestock facilities rather than in small scale biogas plants. Industries interested in pursuing this areas should contact USAID/Islamabad directly to determine the extent to which AID will support commercial initiatives.

#### **Photovoltaics**

It appears that PV power systems, if centrally financed, can make economic sense now in programs such as Pakistan's village uplift efforts. The challenge will be to develop the procedures and infrastructure that will result in socially acceptable introduction and diffusion of the technology and in reliable and effective installations that can be operated and maintained by local communities with the assistance of a rural energy extension service. This development will require joint efforts between the Government of Pakistan and commercial industry from abroad.

The United Nations has sponsored the establishment of four photovoltaic installations in villages in Pakistan. The project, although well-funded, suffered from lack of continuous in-country commercial and technical expertise, and only one of the four villages has a fully operating system. However, Pakistan's mixed experience with previous PV-powered village installations should not discourage the development of such a program. The work of Professor Abdullah and Professor Shaw in successful implementation of some 60 microhydro plants in the N-W F.P. provides an example of a carefully orchestrated, socially sensitive, and technologically appropriate approach to providing electricity and motive power to a rural community in Pakistan. A few examples are discussed below.

PV-powered water pumping appears to have a significant potential in Pakistan provided the appropriate means for financing the initial stages of commercial application can be put in place and PV production facilities can be established in Pakistan. As discussed earlier, the rural development program of the Government of Pakistan may provide the best environment for sales and service of U.S. supplied equipment.

## Photovoltaic Refrigeration

The World Health Organization (WHO) and UNICEF are spearheading a program to immunize children and women of child-bearing age throughout the developing world. WHO studies have also shown that as much 80 percent of vaccines in Africa are impotent (spoiled) by the time they are applied. This is generally due to the breakdown in the refrigeration chain from production to end use.

Photovoltaic refrigeration units appear to be especially suited to high value applications for storage of medicines and vaccines. U.S. studies indicate that the overall cost of delivering a dose of potent vaccine is less for a PV systems than for a kerosene-powered refrigerator, not including the reliability problems associated with possible occasional unavailability of kerosene. Many countries are now using such refrigerators on a trial basis. These should be considered routine equipment for all rural health centers, including those on the grid, since interruptions of power for extended periods can also lead to spoilage of vaccines and medicines. The 35 new rural health centers mentioned in the new Five-Point Socio-Economic Program (rural uplift program) would be obvious candidates for such systems.

## Solar Thermal Electric Power Generation

Solar thermal power plants have been fully commercialized in the U.S. by Luz International Limited, a California corporation that will have installed over 500 MWe of grid-connected facilities by the early 1990s in California. These plants are built as 30 MWe modules, and produce most of their output during the local utility's peak demand period (noon to 6 PM during the summer). Costs have declined steadily to about \$2,500 per kWe, with projected costs declining to about \$2,000 per kWe. Similar manufacturing facilities and solar thermal power plants could in principle be built in Pakistan under joint venture and/or licensing agreements if the economics appeared attractive.

Recently Texas Tech University offered to provide the Crosbyton solar thermal electric bowl system to the PCSIR Solar Energy Centre of Pakistan, if funds could be made available to disassemble, transport, re-erect, and commission the system. While this technology does not represent the most promising of the long-term commercial solar thermal electric options, the Crosbyton Bowl system provides an excellent facility for training graduate students and engineers in the engineering principals of solar thermal electric conversion. However, USAID has recommended against funding this transfer and the issue is now being discussed in Congress.

Future renewable energy technology development and implementation activities conducted by the Pakistan Council of Scientific and Industrial Research (PCSIR), ATDO, and other government bodies will be done under the direction of DGNRER.

## Pakistan Council of Scientific and Industrial Research (PCSIR)

The Pakistan Council of Scientific and Industrial Research is a semi-autonomous body established in 1953 to coordinate and support scientific and engineering research and development in the country. The important government-based capabilities in renewable energy rest with PCSIR. PCSIR operates a network of national laboratories, and for the last decade or so has supported a modest program of renewable energy technology research and development. Most of this work has focused on solar desalination, solar cooking, water heating, and biogas production.

Until last year this work was scattered among several different PCSIR facilities throughout the country. Most of the work and much of the staff has been brought together in a new Renewable Energy Resources Centre in the city of Hyderabad, about 100 miles from Karachi. The staff of approximately 40 professionals is currently based in modest temporary quarters. A permanent modern laboratory and office facility is being designed and will be built on the outskirts of Hyderabad over the coming several years.

### Appropriate Technology Development Organization (ATDO)

The Appropriate Technology Development Organization, headquartered in Islamabad, is a small organization that provides energy extension services to rural communities and small businesses. The ATDO has been in existence for 14 years. ATDO has been responsible for the installation of about 60 microhydro installations with an average capacity of 10 kWe, ranging in size from 3 - 50 kWe. Some 36 additional microhydro facilities are scheduled to be installed in the near future. These have been the most successful of the ATDO projects.

The ATDO is also working with very small wind turbines, ranging from 0.5 - 5 kWe for water pumping (for human consumptive uses and irrigation). They are interested in the design and manufacture of small wind machines. The designs, which are being executed in Pakistan, are based on those of the Intermediate Technology Development Group in London.

## National Institute for Semiconductor Technology (NIST)

The National Institute for Semiconductor Technology has been recently established to act as the country's leading center for silicon technology. A new facility has been completed recently in Islamabad, and contains good facilities for growth of single crystal silicon and preparation and characterization of silicon solar cells and solar arrays.

Solarex, Inc. helped in the design and establishment of NIST. Solarex trained five people (each for 6 months at Solarex) and helped design the laboratory and prepare specifications. After Solarex's founder Dr. Joseph Lindmayer left Solarex, the new management decided to terminate the relationship with NIST. The United Nations

#### Electric Utilities

Pakistan has two electric utility companies - the national Water and Power Development Authority (WAPDA) and the Karachi Electric Supply Company (KESC). The view of senior officials within WAPDA is that WAPDA can have no real interest in renewables until they are capable of providing competitive power in Pakistan in the 10 - 100 MWe range in grid-connected WAPDA officials have stated that the grid will soon serve all but a few percent of the population of Pakistan; hence there is little need for a major emphasis on renewable remote power generation options.

## 3.8 Present Renewable Energy Technology Markets

The government has been the only significant market for modern renewable energy technologies, and virtually all of the foreign exchange has come from international assistance, primarily USAID. In FY 85 \$2.87 million was allocated by USAID for hardware to equip PCSIR laboratories and the National Institute for Semiconductor Technology (NIST). More recently another \$1.5 million was allocated by USAID for purchase of laboratory, test, and demonstration equipment for the PCSIR Solar Energy Research Centre at Hyderabad. Only a portion of these funds were for renewable energy equipment per se.

## USAID Energy Commodities and Equipment Program

In August 1984 a three-year program was signed between the Government of Pakistan and the U.S. Government for the import of energy-related equipment and commodity. \$100 million was obligated (50% loan, 50% grant) during the period FY 1984-86. The main purpose of this program was to support the Government of Pakistan's 6th 5-Year Plan in energy production from indigenous resources and adopt energy conservation measures. The program was aimed at providing fast-disbursing foreign exchange resources for the importation of energy commodities and equipment.

Under this program a "private sector window" was established to provide foreign exchange loans to Pakistan's private sector. According to USAID, the effective demand for U.S. equipment will reflect three factors: technological advantages of U.S. equipment, quality advantages of this equipment, and price competitiveness. The Government of Pakistan set up the mechanism to disburse these funds late in 1985. However the \$50 million program has had negligible disbursements.

The problems include the higher prices of U.S. products relative to those of other countries, the financial terms of the private sector loan window, and the Government of Pakistan's import policies. The interest rate for the financing was set by the State Bank of Pakistan at 11 percent, plus 3 percent for foreign exchange risk coverage. The total rate of 14% provides no incentive for importers with supplier credits or other concessional financing elsewhere. Recently the GOP reduced the total interest rate (including the exchange risk coverage) to 10% and eliminated all transaction limits. The GOP import approval and eligibility under the import policy order have also been a constraint on the program.

- 17. Malhotra, C. P. (1987). Promotional Incentives for Renewables in India. Published in Renewable Energy Planning: Methodological Aspects of Assessment of New and Renewable Sources of Energy and Integrated Planning. Paper presented in August 1985, Bangkok, Thailand. UN-ESCAP.
- 18. Bleviss, D. and Shrivastava, V. (1987). Energy Sector Project Identification for India. The International Institute for Energy Conservation, Washington, D.C. Prepared for the U.S. Trade and Development Program.
- 19. The World Bank (March 20, 1985). Pakistan: Recent Economic Developments and Structural Adjustment. Report No. 5347- PAK. (For Official Use Only)
- 20. Government of Pakistan (August 1987). Energy Chapter: Seventh Five-Year Plan. DRAFT
- 21. A. Mufti, B. Hasan, and W. Ali (August 1986), SAARC Meeting on Solar Energy, Biogas, and Photovoltaics. Ministry of Science and Technology, Government of Pakistan, Islamabad. (Unpublished)
- 22. Hagler, Bailly & Company. Decentralized Hydropower in AID's Development Assistance Program. This report estimates about 300 MWe potential. The Appropriate Technology Development Organization (ATDO) of Pakistan. Micro Hydel Plant estimates the potential very roughly at 150 200 MWe, not counting the opportunities for using zero-head hydro plants in the numerous irrigation canals in Pakistan.
- 23. Mohammad Zakria (no date). Wind Power Potential in the Coastal Region of Pakistan. (Zakria is Director of HEP, WAPDA, Sunny View, Lahore). WAPDA Reprint.
- 24. Energy Year Book 1985 (1986). Directorate General of New and Renewable Energy Resources, Ministry of Petroleum and Natural Resources, Islamabad.
- 25. J. Weingart (1986). Establishment of a High Technology Research and Development Institute for Renewable Energy Resource Development in Pakistan. Prepared for the United Nations Department of Technical Cooperation for Development (UNDTCD), the United Nations Development Programme (UNDP), and the Pakistan Ministyry of Planning and Development.
- 26. Maher Tleimat (1986), Solar-Powered Desalination. Article in Sunworld, Vol. 10, No.
  2. The author of the article is a test engineer at the Solar-Powered Desalination Plant at Abu Dhabi in the United Arab Emirates and should be contacted directly for more information.
- 27. Allan R. Inversin (12/81). A Case Study: Micro-Hydropower Schemes in Pakistan. Published in the Report Series: Small Decentralized Hydropower (SDH) Program. International Programs Division, National Rural Electric Cooperative Association, 1800 Massachusetts Avenue, NW. Washington, DC 20036. Tel. (202) 857-9635. Also see Appropriate Technology Development Organization (6/83) Micro Hydel Plant. ATDO Islamabad